Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
EBioMedicine ; 99: 104924, 2024 Jan.
Article En | MEDLINE | ID: mdl-38113758

BACKGROUND: COVID-19 vaccines used in humans are highly effective in limiting disease and death caused by the SARS-CoV-2 virus, yet improved vaccines that provide greater protection at mucosal surfaces, which could reduce break-through infections and subsequent transmission, are still needed. METHODS: Here we tested an intranasal (I.N.) vaccination with the receptor binding domain of Spike antigen of SARS-CoV-2 (S-RBD) in combination with the mucosal adjuvant mastoparan-7 compared with the sub-cutaneous (S.C.) route, adjuvanted by either M7 or the gold-standard adjuvant, alum, in mice, for immunological read-outs. The same formulation delivered I.N. or S.C. was tested in hamsters to assess efficacy. FINDINGS: I.N. vaccination improved systemic T cell responses compared to an equivalent dose of antigen delivered S.C. and T cell phenotypes induced by I.N. vaccine administration included enhanced polyfunctionality (combined IFN-γ and TNF expression) and greater numbers of T central memory (TCM) cells. These phenotypes were T cell-intrinsic and could be recalled in the lungs and/or brachial LNs upon antigen challenge after adoptive T cell transfer to naïve recipients. Furthermore, mucosal vaccination induced antibody responses that were similarly effective in neutralising the binding of the parental strain of S-RBD to its ACE2 receptor, but showed greater cross-neutralising capacity against multiple variants of concern (VOC), compared to S.C. vaccination. I.N. vaccination provided significant protection from lung pathology compared to unvaccinated animals upon challenge with homologous and heterologous SARS-CoV-2 strains in a hamster model. INTERPRETATION: These results highlight the role of nasal vaccine administration in imprinting an immune profile associated with long-term T cell retention and diversified neutralising antibody responses, which could be applied to improve vaccines for COVID-19 and other infectious diseases. FUNDING: This study was funded by Duke-NUS Medical School, the Singapore Ministry of Education, the National Medical Research Council of Singapore and a DBT-BIRAC Grant.


COVID-19 Vaccines , COVID-19 , Cricetinae , Humans , Animals , Mice , Rodentia , Broadly Neutralizing Antibodies , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Adjuvants, Immunologic , Antibodies, Neutralizing , Antibodies, Viral
2.
J Clin Invest ; 133(19)2023 10 02.
Article En | MEDLINE | ID: mdl-37561585

Lung inflammation is a hallmark of Coronavirus disease 2019 (COVID-19) in patients who are severely ill, and the pathophysiology of disease is thought to be immune mediated. Mast cells (MCs) are polyfunctional immune cells present in the airways, where they respond to certain viruses and allergens and often promote inflammation. We observed widespread degranulation of MCs during acute and unresolved airway inflammation in SARS-CoV-2-infected mice and nonhuman primates. Using a mouse model of MC deficiency, MC-dependent interstitial pneumonitis, hemorrhaging, and edema in the lung were observed during SARS-CoV-2 infection. In humans, transcriptional changes in patients requiring oxygen supplementation also implicated cells with a MC phenotype in severe disease. MC activation in humans was confirmed through detection of MC-specific proteases, including chymase, the levels of which were significantly correlated with disease severity and with biomarkers of vascular dysregulation. These results support the involvement of MCs in lung tissue damage during SARS-CoV-2 infection in animal models and the association of MC activation with severe COVID-19 in humans, suggesting potential strategies for intervention.


COVID-19 , Humans , Animals , COVID-19/pathology , Mast Cells/pathology , SARS-CoV-2 , Lung/pathology , Inflammation/pathology
3.
Sci Adv ; 8(9): eabj4641, 2022 03 04.
Article En | MEDLINE | ID: mdl-35245124

Circulating Ly6Chi monocytes often undergo cellular death upon exhaustion of their antibacterial effector functions, which limits their capacity for subsequent macrophage differentiation. This shrouds the understanding on how the host replaces the tissue-resident macrophage niche effectively during bacterial invasion to avert infection morbidity. Here, we show that proliferating transitional premonocytes (TpMos), an immediate precursor of mature Ly6Chi monocytes (MatMos), were mobilized into the periphery in response to acute bacterial infection and sepsis. TpMos were less susceptible to apoptosis and served as the main source of macrophage replenishment when MatMos were vulnerable toward bacteria-induced cellular death. Furthermore, TpMo and its derived macrophages contributed to host defense by balancing the proinflammatory cytokine response of MatMos. Consequently, adoptive transfer of TpMos improved the survival outcome of lethal sepsis. Our findings hence highlight a protective role for TpMos during bacterial infections and their contribution toward monocyte-derived macrophage heterogeneity in distinct disease outcomes.


Bacterial Infections , Sepsis , Animals , Cytokines , Humans , Macrophages , Mice , Mice, Inbred C57BL , Monocytes
4.
Viruses ; 13(5)2021 05 12.
Article En | MEDLINE | ID: mdl-34066286

Sub-neutralizing concentrations of antibodies in dengue infected patients is a major risk factor for the development of dengue hemorrhagic fever and dengue shock syndrome. Here, we describe a mouse model with a deficiency in mast cells (MCs) in addition to a deficiency in Type-I and II IFN receptors for studying dengue virus (DENV) infection. We used this model to understand the influence of MCs in a maternal antibody-dependent model of severe dengue, where offspring born to DENV-immune mothers are challenged with a heterologous DENV serotype. Mice lacking both MCs and IFN receptors were found susceptible to primary DENV infection and showed morbidity and mortality. When these mice were immunized, pups born to DENV-immune mothers were found to be protected for a longer duration from a heterologous DENV challenge. In the absence of MCs and type-I interferon signaling, IFN-γ was found to protect pups born to naïve mothers but had the opposite effect on pups born to DENV-immune mothers. Our results highlight the complex interactions between MCs and IFN-signaling in influencing the role of maternal antibodies in DENV-induced disease severity.


Immunity, Maternally-Acquired , Mast Cells/immunology , Maternal Exposure , Prenatal Exposure Delayed Effects , Severe Dengue/diagnosis , Severe Dengue/etiology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue Virus/immunology , Disease Models, Animal , Disease Susceptibility , Female , Immunocompromised Host , Mast Cells/metabolism , Mice , Mice, Knockout , Pregnancy , Receptor, Interferon alpha-beta/deficiency , Severity of Illness Index
5.
medRxiv ; 2021 Jun 01.
Article En | MEDLINE | ID: mdl-34100020

Lung inflammation is a hallmark of Coronavirus disease 2019 (COVID-19) in severely ill patients and the pathophysiology of disease is thought to be immune-mediated. Mast cells (MCs) are polyfunctional immune cells present in the airways, where they respond to certain viruses and allergens, often promoting inflammation. We observed widespread degranulation of MCs during acute and unresolved airway inflammation in SARS-CoV-2-infected mice and non-human primates. In humans, transcriptional changes in patients requiring oxygen supplementation also implicated cells with a MC phenotype. MC activation in humans was confirmed, through detection of the MC-specific protease, chymase, levels of which were significantly correlated with disease severity. These results support the association of MC activation with severe COVID-19, suggesting potential strategies for intervention.

6.
Nat Commun ; 12(1): 2130, 2021 04 09.
Article En | MEDLINE | ID: mdl-33837217

Mito-SEPs are small open reading frame-encoded peptides that localize to the mitochondria to regulate metabolism. Motivated by an intriguing negative association between mito-SEPs and inflammation, here we screen for mito-SEPs that modify inflammatory outcomes and report a mito-SEP named "Modulator of cytochrome C oxidase during Inflammation" (MOCCI) that is upregulated during inflammation and infection to promote host-protective resolution. MOCCI, a paralog of the NDUFA4 subunit of cytochrome C oxidase (Complex IV), replaces NDUFA4 in Complex IV during inflammation to lower mitochondrial membrane potential and reduce ROS production, leading to cyto-protection and dampened immune response. The MOCCI transcript also generates miR-147b, which targets the NDUFA4 mRNA with similar immune dampening effects as MOCCI, but simultaneously enhances RIG-I/MDA-5-mediated viral immunity. Our work uncovers a dual-component pleiotropic regulation of host inflammation and immunity by MOCCI (C15ORF48) for safeguarding the host during infection and inflammation.


Electron Transport Complex IV/genetics , Genetic Pleiotropy/immunology , Inflammation/immunology , MicroRNAs/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Cell Line , Electron Transport Complex IV/metabolism , Gene Knockout Techniques , Humans , Inflammation/genetics , Inflammation/pathology , Membrane Potential, Mitochondrial/immunology , MicroRNAs/genetics , Mitochondria/immunology , Mitochondria/pathology , Primary Cell Culture , Reactive Oxygen Species/metabolism , Up-Regulation/immunology
7.
Sci Rep ; 10(1): 11856, 2020 07 16.
Article En | MEDLINE | ID: mdl-32678248

Dengue induces a spectrum of severity in humans from the milder dengue fever to severe disease, or dengue hemorrhagic fever (DHF). Chymase is a candidate biomarker that may aid dengue prognosis. This prospective study aimed to identify whether warning signs of severe dengue, including hypovolemia and fluid accumulation, were associated with elevated chymase. Serum chymase levels were quantified prospectively and longitudinally in hospitalized pediatric dengue patients in Sri Lanka. Warning signs were determined based on daily clinical assessments, laboratory tests and ultrasound findings. Chymase was significantly elevated during the acute phase of disease in DHF or Severe dengue, defined by either the 1997 or 2009 WHO diagnosis guidelines, and persisted longer in the most severe patients. Chymase levels were higher in patients with narrow pulse pressure and clinical warning signs such as severe leakage, fluid accumulation, pleural effusion, gall-bladder wall thickening and rapid haematocrit rise concurrent with thrombocytopenia. No association between chymase and liver enlargement was observed. This study confirms that serum chymase levels are associated with DHF/Severe dengue disease in hospitalized pediatric patients. Chymase levels correlate with warning signs of vascular dysfunction highlighting the possible functional role of chymase in vascular leakage during dengue.


Chymases/blood , Dengue Virus/pathogenicity , Hypovolemia/diagnosis , Pleural Effusion/diagnosis , RNA, Viral/blood , Severe Dengue/diagnosis , Thrombocytopenia/diagnosis , Biomarkers/blood , Child , Child, Preschool , Dengue Virus/genetics , Dengue Virus/isolation & purification , Female , Hospitalization , Humans , Hypovolemia/blood , Hypovolemia/pathology , Hypovolemia/virology , Longitudinal Studies , Male , Pleural Effusion/blood , Pleural Effusion/pathology , Pleural Effusion/virology , Prognosis , Prospective Studies , Severe Dengue/blood , Severe Dengue/pathology , Severe Dengue/virology , Severity of Illness Index , Sri Lanka , Thrombocytopenia/blood , Thrombocytopenia/pathology , Thrombocytopenia/virology , Viral Load
8.
Immunity ; 53(2): 303-318.e5, 2020 08 18.
Article En | MEDLINE | ID: mdl-32579887

Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.


Granulocyte Precursor Cells/cytology , Monocytes/cytology , Myelopoiesis/physiology , Neutrophils/cytology , Animals , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Single-Cell Analysis
9.
J Clin Invest ; 129(10): 4180-4193, 2019 07 02.
Article En | MEDLINE | ID: mdl-31265436

Dengue virus (DENV) infection causes a characteristic pathology in humans involving dysregulation of the vascular system. In some patients with dengue hemorrhagic fever (DHF), vascular pathology can become severe, resulting in extensive microvascular permeability and plasma leakage into tissues and organs. Mast cells (MCs), which line blood vessels and regulate vascular function, are able to detect DENV in vivo and promote vascular leakage. Here, we identified that a MC-derived protease, tryptase, is consequential for promoting vascular permeability during DENV infection, through inducing breakdown of endothelial cell tight junctions. Injected tryptase alone was sufficient to induce plasma loss from the circulation and hypovolemic shock in animals. A potent tryptase inhibitor, nafamostat mesylate, blocked DENV-induced vascular leakage in vivo. Importantly, in two independent human dengue cohorts, tryptase levels correlated with the grade of DHF severity. This study defines an immune mechanism by which DENV can induce vascular pathology and shock.


Capillary Permeability , Dengue Virus/metabolism , Dengue/enzymology , Endothelium, Vascular/enzymology , Mast Cells/enzymology , Shock/enzymology , Tight Junctions/metabolism , Tryptases/metabolism , Animals , Benzamidines , Cell Line , Dengue/drug therapy , Dengue/pathology , Dengue/virology , Endothelium, Vascular/pathology , Endothelium, Vascular/virology , Guanidines/pharmacology , Humans , Mast Cells/pathology , Mast Cells/virology , Mice , Shock/drug therapy , Shock/pathology , Shock/virology , Tight Junctions/pathology , Tryptases/antagonists & inhibitors , Tryptases/genetics
10.
Blood ; 133(21): 2325-2337, 2019 05 23.
Article En | MEDLINE | ID: mdl-30755421

Dengue virus (DENV) is the most prevalent vector-borne viral pathogen, infecting millions of patients annually. Thrombocytopenia, a reduction in circulating platelet counts, is the most consistent sign of DENV-induced disease, independent of disease severity. However, the mechanisms leading to DENV-induced thrombocytopenia are unknown. Here, we show that thrombocytopenia is caused by serotonin derived from mast cells (MCs), which are immune cells that are present in the perivascular space and are a major peripheral source of serotonin. We show that during DENV infection, MCs release serotonin, which prompts platelet activation, aggregation, and enhanced phagocytosis, dependent on 5HT2A receptors. MC deficiency in mice or pharmacologic inhibition of MCs reversed thrombocytopenia. Furthermore, reconstitution of MC-deficient mice with wild-type MCs, but not MCs lacking serotonin synthesis resulting from deficiency in the enzyme tryptophan hydroxylase-1, restored the thrombocytopenic phenotype. Exogenous serotonin was also sufficient to overcome the effects of drugs that inhibit platelet activation in vitro and to restore thrombocytopenia in DENV-infected MC-deficient mice. Therapeutic targeting of 5HT2A receptors during DENV infection effectively prevented thrombocytopenia in mice. Similarly, serotonin derived from DENV-activated human MCs led to increased human platelet activation. Thus, MC-derived serotonin is a previously unidentified mechanism of DENV-induced thrombocytopenia and a potential therapeutic target.


Blood Platelets/metabolism , Dengue Virus/metabolism , Dengue/metabolism , Platelet Activation , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin/metabolism , Thrombocytopenia/metabolism , Animals , Blood Platelets/pathology , Dengue/genetics , Dengue/pathology , Female , Humans , Male , Mast Cells/pathology , Mice , Mice, Knockout , Receptor, Serotonin, 5-HT2A/genetics , Serotonin/genetics , Thrombocytopenia/genetics , Thrombocytopenia/pathology , Thrombocytopenia/virology
11.
J Clin Invest ; 129(3): 1094-1108, 2019 03 01.
Article En | MEDLINE | ID: mdl-30561384

Mast cells (MCs) are immune sentinels, but whether they also function as antigen-presenting cells (APCs) remains elusive. Using mouse models of MC deficiency, we report on MC-dependent recruitment and activation of multiple T cell subsets to the skin and draining lymph nodes (DLNs) during dengue virus (DENV) infection. Newly recruited and locally proliferating γδ T cells were the first T cell subset to respond to MC-driven inflammation, and their production of IFN-γ was MC dependent. MC-γδ T cell conjugates were observed consistently in infected peripheral tissues, suggesting a new role for MCs as nonconventional APCs for γδ T cells. MC-dependent γδ T cell activation and proliferation during DENV infection required T cell receptor (TCR) signaling and the nonconventional antigen presentation molecule endothelial cell protein C receptor (EPCR) on MCs. γδ T cells, not previously implicated in DENV host defense, killed infected targeted DCs and contributed to the clearance of DENV in vivo. We believe immune synapse formation between MCs and γδ T cells is a novel mechanism to induce specific and protective immunity at sites of viral infection.


Dengue Virus/immunology , Dengue/immunology , Immunological Synapses/immunology , Mast Cells/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Animals , Dendritic Cells/immunology , Dendritic Cells/pathology , Dengue/genetics , Dengue/pathology , Disease Models, Animal , Endothelial Protein C Receptor/genetics , Endothelial Protein C Receptor/immunology , Immunological Synapses/genetics , Mast Cells/pathology , Mice , Mice, Transgenic , Receptors, Antigen, T-Cell, gamma-delta/genetics , Skin/immunology , Skin/pathology , T-Lymphocytes/pathology
12.
Virol J ; 8: 531, 2011 Dec 12.
Article En | MEDLINE | ID: mdl-22152111

BACKGROUND: Xenotropic murine leukemia virus (MLV)-related virus (XMRV) is a gammaretrovirus that was discovered in prostate cancer tissues. Recently, it has been proposed that XMRV is a laboratory contaminant and may have originated via a rare recombination event. Host restriction factor APOBEC3G (A3G) has been reported to severely restrict XMRV replication in human peripheral blood mononuclear cells. Interestingly, XMRV infects and replicates efficiently in prostate cancer cells of epithelial origin. It has been proposed that due to lack off or very low levels of A3G protein XMRV is able to productively replicate in these cells. FINDINGS: This report builds on and challenges the published data on the absence of A3G protein in prostate epithelial cells lines. We demonstrate the presence of A3G in prostate epithelial cell lines (LNCaP and DU145) by western blot and mass spectrometry. We believe the discrepancy in A3G detection is may be due to selection and sensitivity of A3G antibodies employed in the prior studies. Our results also indicate that XMRV produced from A3G expressing LNCaP cells can infect and replicate in target cells. Most importantly our data reveal downregulation of A3G in XMRV infected LNCaP and DU145 cells. CONCLUSIONS: We propose that XMRV replicates efficiently in prostate epithelial cells by downregulating A3G expression. Given that XMRV lacks accessory proteins such as HIV-1 Vif that are known to counteract A3G function in human cells, our data suggest a novel mechanism by which retroviruses can counteract the antiviral effects of A3G proteins.


Cytidine Deaminase/genetics , Prostate/metabolism , Xenotropic murine leukemia virus-related virus/physiology , APOBEC-3G Deaminase , Amino Acid Sequence , Animals , Blotting, Western , Cell Line, Tumor , Cytidine Deaminase/metabolism , Down-Regulation , Electrophoresis, Polyacrylamide Gel , Epithelial Cells , Gene Expression , Host-Pathogen Interactions , Humans , Male , Mass Spectrometry , Mice , Molecular Sequence Data , Prostate/cytology , Prostate/virology , Prostatic Neoplasms , Virus Replication
...